A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode

نویسندگان

  • Kanchan A. Joshi
  • Jason Tang
  • Robert Haddon
  • Joseph Wang
  • Wilfred Chen
  • Ashok Mulchandani
چکیده

A disposable biosensor based on acetylcholinesterase-functionalized acid purified multi-wall carbon nanotubes (CNTs) modified thick film strip electrode for organophosphorus (OP) insecticides was developed. The degree of inhibition of the enzyme acteylcholinesterase (AChE) by OP compounds was determined by measuring the electrooxidation current of the thiocholine generated by the AChE catalyzed hydrolysis of acteylthiocholine (ATCh). The large surface area and electro-catalytic activity of carbon nanotubes lowered the overpotential for thiocholine oxidation to 200 mV (vs. Ag/AgCl) without the use of mediating redox species and enzyme immobilization by physical adsorption. The biosensor detected as low as 0.5 nM (0.145 ppb) of the model organophosphate nerve agent paraoxon with good precision, electrode to electrode reproducibility and stability. Analysis of real water sample using the sensor demonstrated the feasibility of the application of the sensor for on site monitoring of OP compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase.

An amperometric biosensor based on the immobilization of organophosphorus hydrolase (OPH) onto screen-printed carbon electrodes is shown useful for the rapid, sensitive, and low-cost detection of organophosphate (OP) nerve agents. The sensor relies upon the sensitive and rapid anodic detection of the enzymatically generated p-nitrophenol product at the OPH/Nafion layer immobilized onto the thic...

متن کامل

V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode.

An enzyme electrode for the detection of V-type nerve agents, VX (O-ethyl-S-2-diisopropylaminoethyl methylphosphonothioate) and R-VX (O-isobutyl-S-2-diethylaminoethyl methylphosphonothioate), is proposed. The principle of the new biosensor is based on the enzyme-catalyzed hydrolysis of the nerve agents and amperometric detection of the thiol-containing hydrolysis products at carbon nanotube-mod...

متن کامل

Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors.

The fabrication, evaluation and attractive performance of multiwall carbon nanotube(MWCNT)/polysulfone biocomposite membrane modified thick-film screen-printed electrochemical biosensors are reported. The fabricated carbon nanotube/polysulfone (CNT/PS) strips combine the attractive advantages of carbon nanotube materials, polysulfone matrix and disposable screen-printed electrodes. Such thick-f...

متن کامل

A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

A disposable organophosphorus pesticides (OPs) enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE) has been developed. Firstly, an acetylcholinesterase (AChE)-coated Fe(3)O(4)/Au (GMP) magnetic nanoparticulate (GMP-AChE) was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs)/nano-ZrO(2)/pru...

متن کامل

Design and Fabrication of Biosensor Based on Immobilized AchE on Modified Electrode by Graphene-multiwall Carbon Nanotubs/Beta Cyclodexterin-chitosan

Organophosphorus (OP) forms an important class of toxic compounds. They inhibit acetyl cholinesterase (AChE, EC 3.1.1.7) that results in respiratory and myocardial malfunctions. Pesticides could be accumulated in vegetables and fruits, so detection of them is very important. The goals of this study are decreasing detection time and detection limit of methyl parathion bioprobe. In this research ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004